Mindstorm Productions

JailBreak

Technical Design Document

Jackson Clouse

Piotr Mintus

Peter Arsoff

Rulon Raymond

Timothy Triantafillou

Table Of Contents

2Table Of Contents

5Game Overview

5Idea

5Summary

5System Requirements

6Timeline

6Clouse, Jackson

6Mintus, Piotr

7Raymond, Rulon

7Arsoff, Peter

8Triantafillou, Timothy

9Milestones

10Alpha Check List

11Beta Check List

12Game Mechanics

12System Specific

12Engine Specific

12Game Specific

12Client/Server Model

12Flowchart

15Singleton Pattern

16Control Loop

16Client

16Server

17Data Flow

17Packager

17Reading Data

18Writing Data

19Graphics Module

19Modular Plugin System

19Terrain Generation

20Terrain Texturing

20Atmosphere

20Shadows

20Hidden Surface Removal

21Sound Module

21Loading

21Modular Plug-in System

21Background Music

22Input Module

22Modular Plug-in System

23Time Module

24Networking Module (High Level)

24Modular Plug-in System

24Client/Server Relations

24Client

25Server

25Interpolation

25Events

26External Modules

27Artificial Intelligence

27Data Structures

28The Core

28Paths

28Normal AI Procedure

30Physics

30Data Structures

31The Core

32Forces

33Orientation changes

34Particles

34Data Structures

37The Core

39Collision Detection

41Client/Server Specification

41Server

41Data Structures

43CalculateServerData

43CompileClientData

43SendServerData

43RecvClientData

44Client

44Data Structures

44RecvServerData

45Interpolate

45SendClientData

45RenderGraphics/Sound/ToScreen

45Communication

45Internal Clients

45External Clients

46User Interface

47Game Flowchart

47User Interface

47Menus and windows

48Mouse and Keyboard Input

49HUD

49Console window and settings

50Artwork

50Models

52User Interface

52Images

54Interfaces

54Graphics Interface

54Sound Interface

54Input Interface

54Math Interface

54Physics Interface

54Miscellaneous

55Appendix A: Code Style

55Headers/Comments

56Naming Conventions

56Common prefixes

57Inheritance in the game

58Mindstorm Productions

Game Overview

Idea

Jailbreak is a first-person shooter for the PC that thrusts players into the role of a prison security guard caught up in a violent liberation of prisoners headed by a rogue militia.

Summary

The purpose of this project is to produce a first-person shooter for the PC platform. The fast-paced action will take place primarily in an outdoor environment. To successfully manage through an area, the player must employ some strategy by picking up and using weapons, ammo, and health to gain an edge on his opponent(s). The entire game will take place in one open terrain environment where the player must destroy all enemies and nine bases, with a pinch of story development handed to the player after defeating each base.
System Requirements

· Pentium 500MHz CPU or equivalent

· CD-ROM drive

· 64MB RAM

· 300MB Free Hard Disk Space

· Windows® 98/ME/2k/XP

· 16MB video card with 3D acceleration

· OpenGL v1.1 compliant display drivers

· DirectX compatible sound card for sound (optional)

· 10baseT network card (for multiplayer)
Timeline

Clouse, Jackson

(Producer)

	Date
	Assignment

	05/20/02
	Network Integration

	05/27/02
	Network Integration & event handling chatting

	06/03/02
	Event handling chatting, event handling game state changes

	06/10/02
	Event handling game state changes, event handling player actions

	06/17/02
	Event handling player actions and bot actions

	06/24/02
	Event handling bot actions, weapon and movement interpolation

	07/01/02
	Alpha - Weapon and movement interpolation

	07/08/02
	Weapon and movement interpolation

	07/15/02
	Beta - Weapon and movement interpolation

	07/22/02
	Final - Weapon and movement interpolation

Mintus, Piotr

(Technical Director)

	Date
	Assignment

	05/20/02
	Shadows

	05/27/02
	Editor – Height map loading & texturing

	06/03/02
	Editor – Height map loading & texturing & Placing Objects

	06/10/02
	Editor – Placing Objects

	06/17/02
	Editor – Spawn points & Triggers

	06/24/02
	Editor – Light map generation

	07/01/02
	Alpha - Editor – Light map generation

	07/08/02
	Editor – Light map generation

	07/15/02
	Beta - Animated clouds

	07/22/02
	Final - Volumetric fog

Raymond, Rulon

(Designer)

	Date
	Assignment

	05/20/02
	Scripting Templates

	05/27/02
	Scripting Templates & Triggers

	06/03/02
	Triggers & Integration with map editor & physics integration with client and server

	06/10/02
	Integration with map editor & physics integration with client and server

	06/17/02
	Bot & AI config file parsing

	06/24/02
	Bot & AI config file parsing, lightning effect

	07/01/02
	Alpha - lightning effect & volumetric flame

	07/08/02
	volumetric flame & damage glow

	07/15/02
	Beta - damage glow, MPEG-2 playing

	07/22/02
	Final – AI chatting

Arsoff, Peter

(Art Director)

	Date
	Assignment

	05/20/02
	Menus – Options, Manual

	05/27/02
	Menus – Networking & In-game, Manual

	06/03/02
	Collision – Interpolation, Manual

	06/10/02
	Collision – Integration with physics, Manual

	06/17/02
	More collision utilities

	06/24/02
	More collision utilities

	07/01/02
	Alpha - More collision utilities

	07/08/02
	More collision utilities

	07/15/02
	Beta - More collision utilities

	07/22/02
	Final - More collision utilities

Triantafillou, Timothy

(Lead Tester)

	Date
	Assignment

	05/20/02
	Modeler – Loading Animations

	05/27/02
	Modeler – Loading Animations

	06/03/02
	Modeler – Tags & skinning

	06/10/02
	Modeler – Animation morphing

	06/17/02
	Modeler – Animation morphing & linear interpolation

	06/24/02
	Modeler – Linear Interpolation

	07/01/02
	Alpha - Modeler – Quaternion Interpolation

	07/08/02
	Finish Modeler

	07/15/02
	Beta - Finish Modeler

	07/22/02
	Final - Finish Modeler

Milestones

	Date
	Milestones

	07/05/02
	Alpha

	07/19/02
	Beta

	07/26/02
	Final

Alpha Check List

	Network Integration

	Event handling chatting

	Event handling game state changes

	Event handling player actions

	Event handling bot actions

	Shadows

	Editor – Height map loading & texturing

	Editor – Placing Objects

	Editor – Spawn points & Triggers

	Scripting Templates

	Triggers

	Integration with map editor & physics integration with client and server

	Bot & AI config file parsing

	lightning effect

	Menus – Options, Manual

	Menus – Networking & In-game, Manual

	Collision – Interpolation, Manual

	Collision – Integration with physics, Manual

	Modeler – Loading Animations

	Modeler – Tags & skinning

	Modeler – Animation morphing

	Modeler – Linear Interpolation

Beta Check List

	Weapon and movement interpolation

	Editor – Light map generation

	lightning effect

	volumetric flame

	damage glow

	More collision utilities

	Modeler – Quaternion Interpolation

Game Mechanics

The entire architecture of the game system has been done in such a way to allow easy portability between different systems. The game itself will be written in 100% C/C++ compliant code. There will not be any system calls made from within the game code itself.

There are three major layers of the game architecture.

System Specific

This layer includes all the system specific code. All calls to system specific APIs are made within this layer. When porting to another system only this layer needs to be rewritten, all other modules need only be recompiled. On the Windows system this layer will consist of multiple in-process code libraries (DLLs). For the graphics these will include the Direct3D8 and the OpenGL modules.

Engine Specific

This layer has all low level engine specific code. This code is all written in system independent code. This entire layer is stored in one in-process code module. This module will export the core classes that the game will inherit and build upon. These classes will include the generic, minimal functionality for any game.

Game Specific

This layer is the game code itself. All code in this layer is game specific. This layer builds upon the classes export by the engine module.

Client/Server Model

This game will run under a Client/Server model, both in Single and Multiplayer. The Server will be in charge of all non-static game data (players, bullets, crates, particles, etc.) and send/receive information to and from clients. The Clients will be in charge of rendering all sounds and graphics, as well as receiving input from players and sending input information to the Server.

Flowchart

The following two pages show a flowchart of the game's architecture.

Client

[image: image1.png]Woads SWED ——— YR AUBUT —mm YOAOSWARSAS ——m

t t t t t

ounLg1d anduralo punosg 1o dengld SHOMINELD

SrmTg

SINpO DU SIMPO InduT S2INPoly punos. Hﬁaﬂm ﬁﬂﬂﬂ

t t t t t
we)sAs bunelsdo

Server

[image: image2.png]2p0) Jy1ads suen

ejeq SWen

SHOMINELD
ounLg1d

saInpol
HOMIN
s9Inpo wL

Singleton Pattern

All the main classes that are exported from the game engine will use the singleton pattern. Every class that may only have one instance will have GetObj() and SetObj() static methods that can be called anywhere from the game to access the global object.

This method is somewhat cleaner than passing around a global pointer to the classes from class to class. This method also eliminates problems with the order of initialization.

The following is an example of a class that uses the singleton method in the game.

typedef class CGraphics : public CTBGraphics

{

protected:

static CGraphics* pObj;

public:

static CGraphics* CGraphics::GetObj()

{ return pObj; }

static void CGraphics::SetObj(CGraphics* pNew)

{ pObj = pNew; }

}*LPCGRAPHICS;

Control Loop

This game will run under two basic threads: client and server. The server will handle everything related to game data; it will be the master of the data. The client will receive data from the server and render sound and graphics.

For a Single Player game, the game will declare itself as the server and will simply spawn a client to do the rendering. This will also happen when the player declares himself to be the server – a client will spawn to do the rendering for the server player.

Client

while(not exit)

{

check for platform specific input (windows messages, etc)

get player input

receive/send network data

render sound and graphics

render to screen

}

Server

while(not exit)

{

check for platform specific input (windows messages, etc)

prepare to send network data

send network data

receive network data

make appropriate changes to game data

}

Data Flow

Packager

All data used by the game will be stored within a single package. This package will be a single large file that contains all the data used by the game. The Hailstorm Archiver and its accompanying library will be used to package all the data files. The Hailstorm Archiver is a tool developed by Piotr Mintus. There are several advantages to using package files in games over loose files. These include: [Bilas00]

· A single static file handle avoids going through file security

· Eliminates small files that take up a lot of cluster space therefore maximizing disc space usage efficiency by about 10%

· Direct static indexing to files, avoids going through the general purpose OS file lookup

· Custom ordering of data eliminates constant seeking of the disks read/write heads

· Versioning made easy by use of the package header, no need to check the version of many files

· The installation of a single 100M package file is going to proceed far more smoothly and appear more professional than 10,000 individual files

Reading Data

Most game data will be read solely from one or more packages. The game high score list and configuration files will be separate files stored on disk in the installation directory.

The configuration files will read using the standard C library stream I/O routines. The standard C library stream I/O routines were chosen for their portability to other systems.

The package file will read by the use of the Hailstorm Archive Library. The library will use file mappings to index into the package without loading the entire file into memory. The data will be transferred from disk to memory.

The library is comprised of the following files:

hsarclib.h

hsarclib.lib
(requires zlib)

The following sample code demonstrates reading data from the package:

// get the size of the data, pass NULL for buffer

dwSize = HSAGetData(hHSAObject,NULL,dwID,HSADATA_BYID);

if(dwSize == 0)

 return; // error

// allocate memory to hold the data

uint8 *pBuffer = new uint8[dwSize];

// retrieve data

HSAGetData(hHSAObject,pBuffer,dwID,HSADATA_BYID);

Writing Data

The only game data written will be the configuration file. These files will be written using the standard C library stream I/O routines. They will be saved to the installation directory.

Graphics Module

Modular Plugin System

The graphics module will enumerate all available render system modules available on the users machine. The render system modules will contain code that calls a specific system API to draw the game to the screen. This modular plug-in system defines an interface for the render system modules. The modules must export that specific interface.

The following are advantage to using this sort of modular plug-in system:

· The game graphics code needs only to be written once using an internal graphics interface.

· The render system modules can be easily added and modified without modifying the game code.

· Portability to other platforms can be easily accomplished by supplying a different render system module.

The game will be redistributed with the following render system modules:

· OpenGL

On the Windows platform the render system modules will be in-process code libraries (DLLs) that will export the defined interface as function pointers. The engine module will assign function pointers to the functions exported by one of the render system modules.

No system specific functions can be called from within the game. All such functions must be encapsulated within the render system modules.

Terrain Generation

The terrain generation goes through several transformations. First the editor loads a height map from file. The height map is a grayscale bitmap. The editor parses the bitmap and uses the color value of the pixel as a control point. The lighter the pixel colors the higher the control point. The control points then are smoothed and new points are generated. These points are the final points that make up the terrain. These points are saved into the level file.

During the rendering process the terrain is split up into patches. These patches all have the same number of vertices. All patches are stored into vertex buffers and the vertices are index using an index buffer. The patch is drawn using triangle strips.

Current hardware draws vertex buffers fastest when they are stored in video memory and never read from. Therefore there is no LOD (Level of Detail) that would require us to modify the vertex buffer at runtime.

Terrain Texturing

The terrain is textured using 2 texture stages. The first stage is the main material (ie. grass); the second stage is a light map. These textures will be applied in one rendering pass.

Atmosphere

The atmosphere in the game will pretty much be a standard skybox. A skybox is basically a cube that encompassed the world. The cube will have 256x256 textures for each face. There probably will only be a need for 5 of the 6 faces to be textured. This will be a cubic map.

An alternative will be using a sky dome with animated cloud textures for a better result. The dome will be pretty much a hemi-sphere. Multiple textures can be used for multiple cloud layers, or we might use procedural clouds, depending on time.

Shadows

The shadows will be calculated using stenciled shadow buffers. The shadows will allow for realistic self-shadowing. The shadows will work on hardware that supports stencil buffers, and most do.

Hidden Surface Removal

In order to achieve high frame rates we will have to use a lot of hidden surface removal techniques. We will use frustum culling to remove terrain patches, objects, and lights clipped by the frustum.

The terrain will also use occluders to remove objects and terrain patches that are hidden behind an occluder. The editor will pre-calculate the occluders using the q-hull library.

Sound Module

Loading

All sound files will be stored within the Hailstorm Archiver. Upon starting a level the game will request the loading of sound files. The files may be in any format, it is up to the system specific modules to accept or reject the raw data given their binary headers. When requesting sound files the developer specifies the priority level, allowing the use of a smart loading system. Once all sound files have been requested their priority is determined based on both their priority level and their reference count.

Modular Plug-in System

The sound system module will enumerate all available sound system modules available on the users machine. The modules must export a specific interface. The sound class within the engine module will import one of these external modules.

The game will be redistributed with the following sound system modules:

· DirectSound 8

On the Windows platform the modules will be in-process code libraries (DLLs) that will export the defined interface as function pointers. The engine module will assign function pointers to the functions exported by one of the modules.

Background Music

The background music will be streamed from the package then decompressed by the OGG library and then finally written into a DirectSound stream buffer.

Input Module

Modular Plug-in System

The input system module will enumerate all available input system modules available on the users machine. The modules must export a specific interface. The input class within the engine module will import one of these external modules.

The game will be redistributed with the following input system modules:

· DirectInput 8

On the Windows platform the modules will be in-process code libraries (DLLs) that will export the defined interface as function pointers. The engine module will assign function pointers to the functions exported by one of the modules.

Time Module

The time module will export system dependant time functions. These time functions will be used for time synchronization within the game. Unlike the other modules in the game there will only be one time module.

On the Windows platform the module will be a in-process code libraries (DLLs) that will export the defined interface as function pointers. The engine module will assign function pointers to the functions exported by one of the modules. The module will use QueryPerformanceCounter on the Windows platform.

Networking Module (High Level)

Modular Plug-in System

The networking module will enumerate all available networking system modules available on the users machine. The networking system modules will contain code that calls a specific system API to network with other machines. This modular plug-in system defines an interface for the networking system modules. The modules must export that specific interface.

The game will be redistributed with the following networking system modules:

· DirectPlay

No system specific functions can be called from within the game. All such functions must be encapsulated within the networking system modules.

Client/Server Relations

The networking module will operate similar to Quake 3. All information on static variables (i.e. the BSP terrain map) will never be transmitted. These variables are unchanging, so no information needs to be updated about these objects between clients. Information on all other (changing) objects in the environment will be transmitted between clients through the server.

Client

Whenever an object has changed in some way, information about the change will be sent to the server in a packet. For example, if one of the players moves forward, the client of that player will tell the server that the player has moved forward by sending a packet containing, but not limited to:

· Position

· Velocity

· Stats[]

· Ammo[]

· Current weapon

· States

The client will also receive game data from the server and render it appropriately.

Server

The server keeps track of all non-static game data including, but not limited to:

· Player Stats

· Position
· Velocity
· Button states

· View angle
· States

· Object Stats

· Position

· Direction

· States

The server will send information packets on all entities in the environment to all clients each time through the loop. Each packet may be tailored to the needs of each client’s needs depending each client’s current stats (i.e. only information for the room the client is currently in, or which only objects within the player’s viewing angle).

Interpolation

In the event that the server is unable to provide the client with new information on the entities currently in the environment during render time, the client will examine each object’s current statistics and interpolate their attributes for the next frame. Once the server provides the client with new information, however, the client’s interpolated information will be overwritten.

Events

Events are special actions that happen in the environment such as an explosion, the firing of a weapon, the death of a character, or anything else that causes the state of an object to change in a special way. The client will inform the server through a reliable connection whenever an event occurs.

The server will then inform all other clients, through a reliable connection, whenever an event occurs. If a client interpolates an event on an object that conflicts with data received from the server, the event will be overwritten. The server’s data is the correct data.

External Modules

The following external modules will be used in the game:

Hailstorm Archiver – Used to package all the game files in one or more bigger packages.

Artificial Intelligence

Data Structures

The artificial intelligence portion of Jailbreak will exclusively deal with that of the enemy characters, bots. Their individual behavior will be determined by which a.i. procedure is assigned to it. Defining specific behavioral patterns in dynamically linked libraries will do this. Each bot will then ‘plug in’ to his own behavior function. Each AI class is derived from the Input class so it can be assigned as a valid form of input to any character. All of the bots’ motion paths are determined by a non-uniform polynomial b-spline.

#define MAX_KNOTS 50

#define MAX_CTRL_PTS 10

class AI;
//forward declaration

class Path {

friend class AI;

public:

Path();

void updatePath(Point3d *curPos);
//updates t and returns the current pos

void init(unsigned int deg);

protected:

static int

numPaths;

float

t;

//current parameter

float

tInc;
//amount to increment t each step

unsigned int
degree;

//degree of the curve

float

*knots;

//knot sequence

unsigned int
numKnots;

//number of knots in the sequence

unsigned int
numCtrlPts;

//number of control points that compose the curve

Point3D

**points;

//the initial and intermediate ctrl pts

};

class AI : public Input{

public:

AI();

//returns the bot’s “input”

keyboardData getInput(/*the complete state of the game*/);void setAIProc(/*some Ai behavior function*/);

void setPath(Path* p);

private:

Path* path; //the current path

keyboardData lastInput;

keyboardData curInput;

/*all info about the bot’s current state*/

// . . .

void AIProc(/*scene info*/, AI* thisAI);

};
The Core

First a character must be assigned an AI input type. Then, whenever AI::getInput() is called, a movement and state are decided upon and the correct corresponding keyboard input is return to be appropriately processed to update the bot. The process of deciding upon movements and state transitions will be handled in that bot’s unique a.i. procedure.

[image: image3.png]character
object

character
input

M
object

ai
behaviorial
procedure
plug-in

Alprocedure

Paths

The path on which the bot travels is calculated by deciding upon spline control points on the fly, in reaction to changes in the environment. When one control point is added and MAX_CTRL_PTS points have been reached, a control point on the tail is deleted.

[image: image4.png]Aﬂ

4‘/’

This means that the degree of the spline curve will increase as control points are added until it is of degree MAX_CTRL_PTS+1. Because of the affine invariance properties of this type of spline curve, all motions will always be smooth.

Normal AI Procedure

The normal procedure for a bot is completely offensive and can be detailed as follows. First, an enemy is chosen. This is done by deciding which living antagonist is closest (linearly). The control points that compose the bot’s path will be determined by which direction the enemy is. The bot will ALWAYS be aiming at his enemy. Whenever there are no physical obstructions, the bot will calculate the position of the enemy as if he will continue at his current velocity in his current direction. Using this calculated position and the known velocity of the bullets the bot is currently equipped with, he will appropriately aim and fire. This process continues until there is a physical obstruction, which will cause a cease fire. If the bot is successful in eliminating his opponent, he will then determine his next enemy. This process repeats until the bot has died.

All of the calculations mentioned above are based upon positions held by all other players as well as the layout of the terrain. These necessary pieces of information must be given to the a.i. procedure for each time it is called from AI::getInput(). The procedure outlined above will be put into a dll so that it can be plugged in to any ai-controlled character.
Physics

Data Structures

The physics in Jailbreak will deal with motions of rigid bodies based on collisions. Using the predefined Point3D and Vector3D structures, basic physics primitives will be defined: Velocity3D, Accelleration3D, and Force3D.

struct Point3D{

float

x;

float

y;

float

z;

//various affine arithmetic operations

};

struct Vector3D{

float

x;

float

y;

float

z;

//various vector-based arithmetic operations

};

struct Acceleration3D : public Vector3D{

//precomputed magnitude in m/s/s

float
mag;

};

//define gravity

const Acceleration3D acclGravity = {0.0f, 9.8f, 0.0f, 9.8f};

struct Velocity3D : public Vector3D{

//precomputed magnitude in m/s

float
mag;

//uses v += v+a*dt

void Accelerate(Accelleration3D& a);

};

enum forceType{FORCETYPE_NONE,

FORCETYPE_NORMAL,

FORCETYPE_FRICTION,

FORCETYPE_TENSION,

FORCETYPE_PUSH,

FORCETYPE_OTHER,

NUM_FORCETYPES

}

struct Force3D{

Point3D

o;

Vector3D

f;

//precomputed magnitude in Newtons

float
mag;

//is the force uniform?

bool

uniform;

forceType

type;

};

There is also a RigidObject base class which all game objects that are affected by the physics engine must derive from.

class RigidObject{

public:

//initialization functions

bool
AddForce(Force3D& f);

//applies forces and updates position

void
Update();

protected:

//in kg, mass=0 –> not affected by gravity

float
mass;

//between 0 and 1

float
elasticity;

//current pos

Point3D
pos;

//current velocity

Velocity3D

v;

//current acceleration

Acceleration3D
a;

//all forces currently being applied

vector<Force3D> forces;

};
The Core

There will be two main functions that will be responsible for applying physics to a game object.

void GetForces(/*everything that needs to be checked for collision*/);

void ApplyPhysics(/*some object that has derived from RigidObject*/);

The GetForces() function will calculate all of the forces acting upon an object based upon its collision<add link> with other game objects and surfaces and put them in RigidObject::forces. The ApplyPhysics() function will take any object which has derived from the RigidObject class and contains a list of triangles which are used to compose it. It will use a ray intersection algorithm to determine which area is affected by the forces currently being applied. If the object has a center of mass, it will be used as a radix making orientation changes (flipping motions, etc) possible. This only applies if the force in question is non-uniform (Force3D::uniform==false) throughout the object.

Forces

	Forces
	
	
	

	force
	type/type
	uniform
	comments

	character/character collision
	FORCETYPE_PUSH/ FORCETYPE_PUSH
	yes
	both characters' velocity=0

	character/environment collision
	FORCETYPE_NORMAL/ FORCETYPE_NORMAL
	yes
	

	character/bullet collision
	FORCETYPE_PUSH/ FORCETYPE_NONE
	yes
	

	character/explosion collision
	FORCETYPE_PUSH/ FORCETYPE_NONE
	yes
	

	bullet/environment collision
	FORCETYPE_NONE/ FORCETYPE_NONE
	yes
	

	blood/environment collision
	FORCETYPE_NORMAL/ FORCETYPE_NONE
	yes
	causes splatter

	character/cart collision
	FORCETYPE_NORMAL/ FORCETYPE_PUSH
	yes
	character can push cart, not vica versa

	cart/environment collision
	FORCETYPE_NORMAL/ FORCETYPE_NORMAL
	no
	

	cart/bullet collision
	FORCETYPE_PUSH/ FORCETYPE_NONE
	no
	

	cart/explosion collision
	FORCETYPE_PUSH/ FORCETYPE_NONE
	no
	

Uniform forces

When applying forces, first off the force due to gravity is computed using Newton’s second law (F = m*a). If the object is touching the ground, the normal force will cancel this out. Friction, tension, and other forces will then be applied to compute a final force. This will produce an acceleration (a = F/m) that can then be used to update the object’s velocity and resultantly, position.

Non-uniform forces

Non-uniform forces are applied only after all uniform forces have been applied. For each non-uniform force, an intersection triangle is determined followed by an immediate change in orientation and acceleration. After all forces have been applied, the object’s velocity and position are appropriately updated. This only happens if it does not jeopardize the integrity a living character’s erect stance (eg. walking up a slope), in which case it is treated as a uniform force.

Reflections

When an object with some non-zero elasticity collides with another object, it bounces. Reflecting the velocity vector about the normal vector of the surface it is colliding with produces this bouncing effect. Loss in total velocity is calculated using loss of energy form a semi-elastic collision with objects of constant elasticity.

Orientation changes

All orientation changes will be determined by interpolating between orientations using key quaternions. First, the key quaternions will be determined by normalizing the orientations to fit on the unit sphere in R4. The center of this sphere will be determined by the given center of mass. These key quaternions will then be interpolated between using spherical linear interpolation (SLERP), spherical quadrangle interpolation (SQUAD), Circular blending, Bezier interpolation, or Cumulative Bezier interpolation. The method of interpolation will be predetermined. Each step of interpolation will produce a 3x3 rotation matrix that will be applied to update the objects orientation.

Particles

Data Structures

The particle engine in Jailbreak will be based on a series of particle systems. The engine will follow the following “rules”:

· New particles are generated and placed into the current particle system

· Each new particle is assigned it's own unique attributes

· Any particles that have outlasted their life span are declared 'dead' (not freed from memory)

· The current particles are moved according to their scripts (or in our case, according to their pre-assigned velocity vectors)

· The current particles are rendered

In the engine, each particle system (a group of particle's 'master') will have it's own emitter, and some set values to pass on to each particle. The particle will then be ejected with its motion being determined by its individual properties. The particles and particle systems will be represented graphically as small squares.

[image: image5.png]shape the shape

vertex #1 shipe vertex #2
triangle
#2
triangle
#1
shape shape
vertex #4 vertex #3

Particle
Position

#define MAX_PARTICLES
10000

class ParticleSystem; //forward declaration

enum ParticleType{PARTICLETYPE_NONE,

PARTICLETYPE_BLOOD,

PARTICLETYPE_FIRE,

NUM_PARTICLETYPES

}

class Particle

{

private:

ParticleSystem* Parent;

public:

Particle ();

~ Particle ();

ParticleType
type;

Point3D
prev_location;

// the particle's Last position

Point3D
location;

// the particle's Current position

Vector3D
velocity;

// the particle's Current Velocity

float

color[4];

// the particle's color

float

color_counter[4];
// the color counter!

float

alpha;

// the particle's current transparency

float

alpha_counter;

// adds/subs transparency over time

float

size;

// the particle's current size (width)

float

size_counter;

// adds/subtracts size over time

float

age;

// the particle's current age

float

dying_age;

// the age at which the particle dies

void setParentSystem(ParticleSystem * parent);

void Create(ParticleSystem * parent, float time_counter);

bool Update(float time_counter);

};

class ParticleSystem

{

private:

// is the system attracting particle towards itself?

bool attracting;

// have the particles stopped emitting?

bool stopped;

// the particle's texture

unsigned int
texture;

// particles emitted per second

unsigned int
particles_per_sec;

// the number of particles currently alive

unsigned int
particles_numb_alive;

// the system's current age (in seconds)

float

age;

// the last time the system was updated

float

last_update;

// helps emit very precise amounts of particles

float

emission_residue;

public:

ParticleSystem();

~ParticleSystem();

/* note: the array of particles is public so we can check for particle collisions*/

// all of our particles

Particle
particle[MAX_PARTICLES];

// the last known location of the system

Point3D
prev_location;

// the current known position of the system

Point3D
location;

// the current known velocity of the system

Vector3D
velocity;

// the starting size of the particles

float

start_size;

// adds/subtracts particle size over time

float

size_counter;

// the particle's end size (used for a max boundary)

float

end_size;

// the starting transparency of the particle

float

start_alpha;

// adds/subtracts particle's transparency over time

float

alpha_counter;

// the end transparency (used for a max boundary)

float

end_alpha;

// the starting color

Vector3D
start_color;

// the color that we interpolate over time

Vector3D
color_counter;

// the ending color

Vector3D
end_color;

// the system's speed

float

speed;

// the system's speed counter

float

speed_counter;

// the system's life (in seconds)

float

life;

// the system's life counter

float

life_counter;

// system's angle (90==1/2 sphere, 180==full sphere)

float

angle;

// used for random positioning around the emitter

int

spread_min;

int

spread_max;

// used to divide spread

float

spread_factor;

// gravity for the x, y, and z axis

Acceleration3D gravity;

float

attraction_percent;

bool Update(float time, int flag, float num_to_create);

void Render();

unsigned int activeParticles();

float getLocation(float x, float y, float z);

void setLocation(float x, float y, float z);

void setTexture(texture* texture1);

void setParticlesPerSec(unsigned int number);

void setVelocity(float xv, float yv, float zv);

void setSize(float startsize, float endsize);

void setAlpha(float startalpha, float endalpha);

void setSpeed(float Speed);

void setAngle(float half_angle);

void setSystemFlag(int flag, bool state);

void setColor(float start_red, float start_green, float start_blue, float end_red, float end_green, float end_blue);

void setLife(float seconds);

void setSpread(int Spread_Min, int Spread_Max, float Spread_factor);

void setAttraction(unsigned int Attraction_Percent);

void setGravity(float xpull, float ypull, float zpull);

bool isAttracting(){return attracting;}

bool isStopped(){return stopped;}

};

The Core

	Particles
	
	

	particle
	color
	properties

	fire/explosion
	orange/yellow gradient
	short lifetime, no splattering

	blood
	bright red
	longer lifetime, can splatter

Once a generator is instantiated, everything is pretty much controlled by the ParticleSystem::Update() function. This is responsible for emitting particles in specific directions at given time intervals, each with its unique properties. Gravity is applied and collisions between particles and game objects and surfaces are checked for. If a collision occurs the particle is declared dead. If a particle system collides with an object or surface, it is declared dead. In the case of particles that can splatter, only after it spawns four more particle systems with the identical properties (except that their velocity vectors will be reflected across the normal to the surface being collided with). This process of spawning new particle systems continues on until the system’s total velocity when the collision occurs is less the 1m/s. When a particle system dies, it is freed from memory.

Since this generator is closely tied in with the graphics module, it has its unique rendering function that is responsible for render the particle system with all of its particles. After determining which particles are visible, it calculates their colors (or applies textures) and draws them.

Collision Detection

There are a few types of collision tests that possibly need to be done in our game:

· Sphere vs. sphere

· Sphere vs. ray

· Sphere vs. box

· Sphere vs. triangle

· Triangle vs. ray

· Triangle vs. point

There will also be octree versions of functions wherever there are box versions of functions.

There may be specialized versions to check if an object collides with a terrain height-map.

The general prototype looks like:

bool isIntersecting(const Type1 &a, const Type2 &b);

This function will be overloaded for all the types listed above and for the types in the reverse order (for convenience) like:

bool isIntersecting(const Sphere &sphere, const Box &box);

inline bool isIntersecting(const Box &box, const Sphere &sphere);

{

return isIntersecting(sphere, box);
}

The isIntersecting() family of functions for objects do not assume anything except that the geometry is valid. There will be assertions in the debug build to catch invalid geometry though.

There is a isFastIntersecting() family of functions that make various assumptions. For example, the triangle vs. point assumes the point coplanar with the triangle.

Possible optimizations and other implementation details:

· It’s a good idea to sort entities (possibly have a few different entity lists sorted by different keys) and being able to trivially reject entities that have no chance of colliding with the current object.

· Some functions use sphere collision first to see if it should continue with more extensive intersection tests.

· Octrees can be done by recursively doing box collisions. Some efficiency is gained if there is a max number of subdivisions so you can loop through it while managing an array as a stack instead of using recursion.

Some functions might be written in assembly if the compiler generates crappy code.

Client/Server Specification

Server

Data Structures

Main Structure

The server’s main data structure contains all non-static game data.

SData{

List Clients
//list of clients (structures [networking data])

List Objects
//list of objects (structures [game data])

List Events //list of all events happening in the environment (pointers to

structures)

List Frames //list of frames that need to be sent to clients

}

Object Structure

The Object structure will contain all essential information about objects that needs to be sent each time.

SObjects{

Position
//player’s current position

Direction
//direction vector (velocity)

Button states //Booleans (for players)

}

Event Structures

Event structures contain information about special events. The server tells the client about them when they happen.

//--Falling (When a player is falling)--//

EFalling{

ID Falling //event ID

PlayerID //index into list of objects [server frame]

}

//--Weapon Change--//

EWeapChange{

ID WChange //event ID

PlayerID
//index into list of objects [server frame]

WeaponID
//which weapon is equipped

WState
//the state of the weapon[changing, attacking, etc]

}

//--Explosion--//

EExplosion{

ID Eexplode //event ID

ObjectID //index into object list

Attributes //other attributes

}

//--Blood Splattering--//

EBSplatter{

ID Splatter //event ID

ObjectID //index into object list

Attributes //other info

}

//--Weapon Firing--//

EWFire{

ID WFIRE //event ID

ObjectID //index into object list

WeaponID //which weapon

Position //new object's position (i.e. bullet)

Direction //new object's direction(velocity)

}

//--Object Eliminated--//

EOElimiate{

ID OELIMIATE //event ID

ObjectID //index into object list

}

//--Object Spawned--//

EOSpawn{

ID OSPAWN //event ID

ObjectID //type of object

}

//--Player Jump--//

EPJump{

ID PJUMP //event ID

ObjectID //index into object list

}

Each event will have a separate function to handle it depending on what the functionality of the event will be.

Server Frame

Everytime the server sends something to the client, it will compile a list of all objects and events that need to be sent to that specific client.

SFrame{

List Objects //dynamically allocated list of object structures

List Events
 //dynamically allocated list of event structures

}

Server Loop
Each time though the loop, the server will compile a list of objects and events to send to each client, depending on the data received last time through the loop.

SLoop{

CalculateServerData();

CompileClientData();

SendServerData();

RecvClientData();

}

CalculateServerData

This function handles any calculations that need to be performed on non-player-controlled objects (i.e. explosions, bullets, particles, etc). None of these objects require player input, so client information is not needed to calculate their behavior.

It also determines when an event is to occur (player-controlled or not).

CompileClientData

This section of network code cycles through all game data and creates the frames need to be sent to each client.

SendServerData

This section of network code sends all frames to their perspective clients.

RecvClientData

This section of network code receives frames from clients and makes appropriate changes to the game data.

Client

This section deals with all client data as it relates to the networking module.

Data Structures

Main Structure
CNData{

Graphics Data

Sound Data

Network Data (IP addresses, etc)

Object Data

Events

List Frames //list of frames to be sent to server

}

Client Frame

Client frames are sent to the server. They contain mostly input information on player-controlled objects.

CFrame{

List Objects; //list of objects, mostly player controlled

}

Object Structure
CObject{

Position //object's position

Vector //object's direction vector

Button States //pressed or not pressed

}

Client Loop
CLoop{

RecvServerData();

Interpolate();

SendClientData();

RenderGraphics();

RenderSound();

RenderToScreen();

}

RecvServerData

This function receives game data from the server and makes the appropriate updates.

Interpolate

Everytime information on a particular object is not received, the interpolation function will examine the game data for that object (position, direction vector, button states, time stamp, etc), predict the object's behavior for the next frame and make the appropriate changes to the game data.

It will also keep track of which information is interpolated and which is not. This is so that when the correct data is received it can be overwritten.

SendClientData

This function sends all client networking frames to the server. It sends client input data.

RenderGraphics/Sound/ToScreen

These functions deal with rendering. They are specified in the Graphics Module section.

Communication

The server will communicate with two types of clients - internal and external. Internal Clients are on the same machine as the server and share processor power through the use of threading, and External Clients are on separate machine. Depending on the type of client, the server will communicate with that client through a separate method (API call).

Internal Clients

Communication with internal clients will happen through the use of threading.

External Clients

External Client communication happens over a network through the use of DirectPlay, which encompasses WinSock.

User Interface

The user interface for JailBreak will be comprised of a keyboard and a mouse, along with a menu system.

The keyboard and mouse are as outlined the Game Design Document, but are included here for your convenience.

[image: image6.png]Directional Controls (Right Handed)
ntrols (Left Handed)

The mouse is for looking and firing (Left Click), while the keyboard controls all other movements and functionality.

Game Flowchart

[image: image7.png]Loading|

[Main Menul

[Single Player| | [Multiplayer] ~[Credits| [Quit] [Settings]

reate Game]

End Game

User Interface

This includes the menus, in game console, HUD, and reading/writing settings.

In game menus can be implemented by switching the projection matrix and rendering there. Be careful to scale the matrix in case the user has a different resolution.

All widgets and UI stuff will be rendered last to make sure they’re on top and to change the projection matrix only once per frame.

There will be functions to output text, capture keyboard input, capture mouse input, and draw 3d models.

Menus and windows

This will be a simple linked list of Window objects that people can derive from to create windows. The head node of the Window list will be the topmost parent window. Every other window rendered will be on top of that one. Since we are using an orthographic projection, we can change the z-order of each window to make sure they are on top of each other and not affected by the z-buffer.

The class should look like:

class Window {

public:

Window(Window *parent, const FRECT &rect);

virtual ~Window();

static bool IsInFocus();

Window *GetFocus() const;

void SetFocus() const;

virtual void Render() { }
// called every frame when the window should render itself

// called every frame if the game is in menu mode instead of game mode. Always called

// before render if it is in this mode.

virtual bool Think() { return true; }

const FRECT & GetRect() const { return rect; }
private:

Window *next;

FRECT rect;

};

Mouse and Keyboard Input

Only one widget will have keyboard input at a time. The mouse will either be in menu mode or aiming mode.

Here are some helper functions that will be made in addition to the normal input functions available.

static int Keyboard::GetChar();

There is an internal character buffer. GetChar() returns the last key typed in, ‘\n’ when they push return, or EOF when there is no characters left in the buffer that have been parsed.

static void Keyboard::Flush();

This flushes the buffer.

static void Mouse::SetXY(long x, long y);

static long Mouse::GetX();

static long Mouse::GetY();

static long Mouse::GetButtons();

static HCURSOR Mouse::GetCursor();

static void Mouse::SetCursor(HCURSOR cursor = 0);

static void Mouse::ShowCursor(bool shouldShow = true);

General mouse functions. Should be obvious. TODO: Think of what HCURSOR should be.

HUD

[image: image8.png]

The screen should contain:

· Mouse driven cursor to aim and select things from menus.

· A hand holding a weapon near the bottom of the screen.

· Radar in lower left corner that shows nearby enemies and a compass. It will display the terrain heightmap.

· Health and Ammo with bars that change colors and shrink as the number go down.

· Press some key to get the console window to show up

Console window and settings

All settings will be read and written to an INI file. Settings can be set and modified from the in game console.

We will probably need a few more windows to let the user bind keys to different commands, ask the user if they want to quit, windows for listing game servers or entering IP addresses, etc.

Artwork

Models

All models must be formatted into the md3 Quake 3 file format. All we need is the *.md3 file that contains the model. They will be imported via the editor.

	Name
	Description
	Max Poly Count
	Animations

	Security Guard
	Humanoid wearing black full-body suit along with helmet and open visor

	1500
	Walk, Crouch, Jump, Get Hit, Die

	Mafia Prisoner
	Humanoid wearing loose orange standard issue prison garb

	1500
	Walk, Crouch, Jump, Get Hit, Die

	Male Militia Soldier
	Humanoid wearing full body camouflage clothing and makeup

	1500
	Walk, Crouch, Jump, Get Hit, Die

	Female Militia Soldier
	Humanoid wearing full body camouflage clothing and makeup

	1500
	Walk, Crouch, Jump, Get Hit, Die

	Pistol
	A standard issue pistol.
	1500
	Fire Weapon

	Lead Bullet
	A regular-looking lead bullet, which is fired from the Pistol.
	1500
	None

	Tree (one model)
	The terrain will be littered with these trees. They will be about twice the height of a humanoid character, with the green part starting on the upper half of the tree.
	1500
	None

	Rock (one model)
	The terrain will be littered with these rocks. It is gray with a smooth shape, like the rocks in Halo but smaller, about half the height of a humanoid character.
	1500
	None

	Wooden Crate
	The terrain will be littered with wooden crates that explode with collided with a lead bullet. The explosion will be handled by the game’s particle engine, and does not require animating. The crate should be a box shape.
	1500
	None

	Health Power Up
	The terrain will be littered with health power ups. It should look like an item that will restore your health.
	1500
	None

	Ammo Power Up
	The terrain will be littered with ammo refills (for lead bullets). It should look like a refill for lead bullets.
	1500
	None

	Enemy Base
	On the terrain there will be enemy bases. The base will be a small encampment (about half the size of a 7-11), with a missile launcher showing somewhere, indicating that it might be the launching place from which the missile that shot down the transport ship was fired. The base must be small enough so that nobody can walk into it.
	1500
	None

	Prison Transport Ship
	This is the transport ship that was carrying the prisoner and was shot down.
	1500
	None

User Interface

In addition to the models, we will also need graphics to make the front end menus look cool. Mockups of the menus are listed below. All we will need is the *.bmp files that contain the graphics. The layout of the menus is changeable. The mockups are just there to show the members of each menu. If you want to change the layout of each menu to make it look cooler it is completely up to you. Also, missing from the mock ups is a back button. Each menu (except for the main menu and pause menu) will have a back button.

Images

	Name
	Description

	Main Menu Background
	The background for the main menu screen.

	Multiplayer Background
	The background for the create/join multiplayer screen.

	Pre-game Background
	The background for the pre-game screen.

	Settings Background
	The background for the settings screen.

	Credits
	The credits screen.

	Pause Background
	Background for the pause screen.

	Press To Change Button Window
	The window screen that comes up when the player is attempting to change the button configuration.

	Single Player Button
	From the main menu, the button that the player will select in order to begin a single player game.

	Multiplayer Button
	From the main menu, the button that the player will select in order to begin a multiplayer game.

	Credits Button
	From the main menu, the button that the player will select in order to view the credits.

	Back Button
	From all menus except the main and pause menu, the player will press this button to return to the previous screen.

	Quit Button
	From the main or pause menus, the player will press this button to quit the game.

	Settings Button
	From the main menu, the button that the player will select in order to change the game settings.

	Change Button
	From the settings screen, the player will press this button to change the configuration of a button.

	Regular Button
	From the settings screen, the player will press this button to switch the looking configuration from inverted to regular.

	Inverted Button
	From the settings screen, the player will press this button to switch the looking configuration from regular to inverted.

	640x480 Button
	From the settings screen, the player will press this button to set the screen resolution to 640x480.

	800x600 Button
	From the settings screen, the player will press this button to set the screen resolution to 800x600.

	1024x768 Button
	From the settings screen, the player will press this button to set the screen resolution to 1024x768.

	Sfx & Music Slide Bar
	From the settings screen, the player will press this button to set the volume of the sound effects and music.

	Create Button
	From the multiplayer screen, the player will press this button to host a game.

	Join Button
	From the multiplayer screen, the player will press this button to join a game (after entering the server’s IP address)

	Begin Button
	From the pre-game screen, the server player will press this button to begin a game after everyone has joined. All non-server players will not see this button.

	Resume Button
	From the pause menu, the player will press this button to resume the game in progress.

Interfaces

The header files are fairly well commented and are available in the project’s source control database. The paths listed below are relative to those stored in the database.

Graphics Interface

./include/ctbgraphics.h

The main graphics class: CTBGraphics

./include/cgcdef.h
Definitions/flags used with the CTBGraphics class

./include/ctbmodel.h
The engine model handing class: CTBModel

./include/cmcdef.h
Definitions/flags used with the CTBModel class

./include/display2ddef.h
2D screen constants

./include/ctbtexture.h
The main texture parsing class: CTBTexture

./include/ctcdef.h
Definitions/flags used with the CTBTexture class

./include/tbui.h

2D GUI interface

Sound Interface

./include/ctbsound.h

The main sound class: CTBSound

./include/cscdef.h

Definitions/flags used with the CTBSound class

Input Interface

./include/ctbinput.h

The main sound class: CTBInput

./include/cicdef.h

Definitions/flags used with the CTBInput class

Math Interface

./include/tbmath.h

The internal math interfaces

Physics Interface

./include/physics.h

The main physics library

Miscellaneous
./include/types.h

Portable types used within the project

./include/tberr.h

Error return values used within the project

./include/measurement.h

Conversion units used within the project
Appendix A: Code Style
Headers/Comments

File Header (VC macros that will generate these automatically will be given out)

/***

*

* $Archive: $

*

* $Purpose: <Your description goes here>

*

* $History: $

*

***/

Function Header (these are done to mimic the VSS style for the file header)

(VC macros that will generate these automatically will be given out)

/***

*

* Function: <Function Name Goes Here>

*

* Purpose: <Your description goes here>

*

* History:

*

* ***************** Version <#> ******************

* User: <NAME> Date: <mm/dd/yy>

* <Version Description>

*

***/

Once you update a function add one of these after History: in the function header

New updates will be on top (once again VSS style)

*

* ***************** Version <#> ******************

* User: <NAME> Date: <mm/dd/yy>

* <Version Description>

Naming Conventions

Classes inside the Engine Module will be prefixed with CMS* (ie. CMSSound).

typedef class DLLEXPORT CMSSound

{

}*LPCMSSOUND;

Classes in game will not have any special prefixes:

typedef class CSound

{

}*LPCSOUND;

Structs and Enums are in upper case

typedef struct _MYSTRUCT

{

...

}MYSTRUCT,*LPMYSTRUCT;

enum MYENUM

{

};

Structures, flags, enums for a certain engine module class are stored in other files. For example the CMSGraphics class uses CGC* structs, flags and enums, while CMSSound uses CSC*.

Common prefixes

	Prefix
	Description

	i
	Integer

	f
	Float

	b
	uint8

	w
	uint16

	dw
	uint32

	sz
	String

	c
	Char

	h
	Handle

	g_
	Global

Inheritance in the game

The game code will inherit the classes exported by the engine module.

typedef class CGraphics : public CMSGraphics

{

protected:

static CGraphics* pObj;

public:

static CGraphics* CGraphics::GetObj()

{ return pObj; }

static void CGraphics::SetObj(CGraphics* pNew)

{ pObj = pNew; }

}*LPCGRAPHICS;

There will be a header file that is included in all files; in that header there will be inline functions that call the static members of these classes:

inline LPCGRAPHICS pGraphics()

{

return CGraphics::GetObj();

}

Then anywhere in the game to access to the graphic functions the following call must be made.

pGraphics()->DrawPrimitive(...);

This requires a function call to get the pointer followed by a de-reference followed by the DrawPrimitive call.

Therefore it is strongly recommended that if you're going to use a singleton class heavily that you create a local pointer to the class on initialization.

Mindstorm Productions
Producer

Jackson Clouse

Technical Director

Piotr Mintus

Designer

Rulon Raymond

Art Director

Peter Arsoff

Lead Tester

Timothy Triantafillou

M i n d s t o r m P r o d u c t i o n s – 2 0 0 2
2

DigiPen Institute Of Technology

_1073376280

_1073382285

_1073372046

